Higher education teachers: Zupančič Borut
Subject description
Prerequisits:
Completed 1st cycle of the appropriate technical study
Content (Syllabus outline):
- Introduction to control systems: general, types, effects, building elements, holistic and systemic approach.
- Modelling: objectives, system, process, simulation, theoretical, experimental and combined modelling, cyclic approach in modelling and simulation, examples: car suspension, room heating, pray and predator system. Presentation of models in Dymola-Modelica environment.
- Model descriptions: differential equations, transfer functions, block diagrams.
- Simulation: basic methods (indirect approach, transfer functions), description of Matlab-Simulink environment.
- Computer-aided analysis, modelling and simulation.
- Analysis of systems in the time domain: influence of poles and zeros, proportional, integral and differential systems, stability.
- Control systems: open-loop, closed loop system, tracking and regulating performance, control quality indicators, working point treatment, steady state analysis, stability.
- Control algorithms: PID algorithm, the determination of the parameters with setting rules, optimization of parameters by using the Matlab environment, suitable functions, computer implementation of the PID algorithm.
- Analysis and design of control systems with root locus diagram.
- Analysis and design of control systems in the frequency domain.
- Analysis and design of control systems in state space.
Objectives and competences:
The basic objective is to present the control system’s area in an interesting way through a number of cases, the use of computer tools and practical work in a well-equipped laboratory. Acquired skills are as follows: modelling and simulation of systems that occur in automation, understanding the principles of feedback loop, PID control and more advanced control approaches: compensation methods, the state space control , ...), presentation and usage of advanced software tools for system analysis, modelling, simulation and control design.
Intended learning outcomes:
Students will learn: to model and simulate systems that arise in the control area, control design of real and laboratory processes and application of the most advanced computer tools for analysis, modelling, simulation and design of control systems (Matlab, Control Systems Toolbox, Simulink, Dymola-Modelica ).
Learning and teaching methods:
Lectures, laboratory exercises
Study materials
Readings:
Osnovna/basic:
- B. Zupančič, Vodenje sistemov, delovna verzija učbenika, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2015.
- Gregor Klančar, Vodenje sistemov, Praktikum, delovna verzija gradiva za laboratorijske vaje, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2014.
- S. Oblak, I. Škrjanc, Matlab s Simulinkom : priročnik za laboratorijske vaje, 1. izdaja, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2005.
Dodatna/additional:
- B. Zupančič, Zvezni regulacijski sistemi 1. del, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2010.
- B. Zupančič, Zvezni regulacijski sistemi 2. del, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 2010.
- B. Zupančič, Računalniška simulacija, delovna verzija učbenika za predmet Računalniška simulacija, Univerza v Ljubljani, Fakulteta za elektrotehniko , 2015.
- B. Zupančič, Modelica, delovna verzija učbenika za predmet Računalniška simulacija, Univerza v Ljubljani, Fakulteta za elektrotehniko , 2015.
- R. Karba, Modeliranje procesov, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1999.
- S. Strmčnik, R.Hanus, Đ. Juričić, R. Karba, Z. Marinšek, D.Murray-Smith, H. Verbruggen, B. Zupančič, Celostni pristop k računalniškemu vodenju procesov, 1. izdaja, Založba FE in FRI, Univerza v Ljubljani, Fakulteta za elektrotehniko, 1998.
- R. C. Dorf, H. Bishop: Modern Control Systems, Pearson Education, Inc., Publishing As Pearson Prentice Hall, Tenth Edition, 2004.